A particle swarm optimization based simultaneous learning framework for clustering and classification

نویسندگان

  • Ruochen Liu
  • Yangyang Chen
  • Licheng Jiao
  • Yangyang Li
چکیده

A particle swarm optimization based simultaneous learning framework for clustering and classification (PSOSLCC) is proposed in this paper. Firstly, an improved particle swarm optimization (PSO) is used to partition the training samples, the number of clusters must be given in advance, an automatic clustering algorithm rather than the trial and error is adopted to find the proper number of clusters, and a set of clustering centers is obtained to form classification mechanism. Secondly, in order to exploit more useful local information and get a better optimizing result, a global factor is introduced to the update strategy update strategy of particle in PSO. PSOSLCC has been extensively compared with fuzzy relational classifier (FRC), vector quantization and learning vector quantization (VQþLVQ3), and radial basis function neural network (RBFNN), a simultaneous learning framework for clustering and classification (SCC) over several real-life datasets, the experimental results indicate that the proposed algorithm not only greatly reduces the time complexity, but also obtains better classification accuracy for most datasets used in this paper. Moreover, PSOSLCC is applied to a real world application, namely texture image segmentation with a good performance obtained, which shows that the proposed algorithm has a potential of classifying the problems with large scale. & 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous clustering and classification over cluster structure representation

Two main tasks in pattern recognition area are clustering and classification. Owing to their different goals, traditionally these two tasks are treated separately. However, when label information is available, such separate treatment can not fully explore data information. First, classification is not favored by the data cluster structure. Second, clustering is not guided by valuable label info...

متن کامل

S3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization

Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Approach for Solving Multiclass Problem of EEG Data using Multiobjective Simultaneous Learning Framework (AMEMS)

The Recent modern techniques, communication between humans and computers is proven a tremendous achievement in the field medical science. Computer hardware and signal processing have made possible the use of EEG signals or “brain waves” for Human-computer communication. Electroencephalography (EEG) is the electrical activity recording along the scalp. EEG refers to the recording of the spontane...

متن کامل

A Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems

In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2014